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Abstract. It has recently been established that a product bundle, composed of two gauge
structures, under some circumstances, possesses a geometry which does not split. Here we
provide an educated extension of the above idea to products ofmany vector bundles with a
distinct group structure associated with each factor fibrespace in the splice. The model employs
connection 1-forms with values in a space product of Lie algebras, and therefore interlaces the
various gauge structures in a non-trivial manner. Special attention is given to the structure of
the geometric ghost sectors and the super-algebra they possess.

1. Introduction

A product of vector bundles, within the classical framework of gauge theories, is often
contemplated as the bundle of product space fibres or, otherwise, as the bundle of fibre direct
sums. Then, the splitting of the fibres causes a splitting of the corresponding geometries by
trivial means: when the geometrical aspects of a single group structure are considered, those
components of a geometric object that correspond to other co-existing group structures, all
remain non-active. This observation is after all a simple consequence of the Leibnitz rule.
For example: the absolute differential of a tensor product of two fibre bases (vector fields)
splits into a sum of tensor products, each contains an absolute differential of a respective
single-basis, which is, in turn, used to define the corresponding factor structure connection,

d(e1⊗ e2) = (de1)⊗ e2+ e1⊗ d(e2)

=: ω1(e1)⊗ e2+ e1⊗ ω2(e2). (1)

In other words, the geometry of the entire splice is determined by considering horizontal
transports of factor-fibre bases, one at a time.

The splitting forced upon us by the Leibnitz rule, however, is not entirely compatible
with the idea of fused structures: is it possible to form a better glue of fibres, one that
really fuses the geometries of the composite bundle? This is indeed possible, under certain
circumstances, by exploiting a different type of connection inducement: consider again the
case of a glue of two structures, with the following formal redefinition of connections:

d(e1⊗ e2) = (de1)⊗ e2+ e1⊗ d(e2)

=: ω1(e1⊗ e2)+ ω2(e1⊗ e2). (2)

The conditions for which definition (2) can be really accepted, and which make it also
meaningful, will later be elaborated. For the moment, we shall only mention that it gives
rise to a non-split geometrical structure, even though the bundle itself inherently splits.

† E-mail address: megged@post.tau.ac.il
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This work contains a generalization and an elaboration of a previously proposed model
[1]. The text includes two main sections, additional closing remarks, and an appendix:
• Section 2. Pedagogical presentation of the model. Following a concise description

of the mathematical set-up (product bundle), and a listing of some useful conventions, a
non-split geometry is constructed on the basis of a collection of connection 1-forms, each
taking values in a space product of Lie algebras, instead of in the direct sum. These
are integrated to form a single curvature of the multistructure splice. We discuss the
requirements for a consistent construction, thus defining a new notion, that of algebras
sealed in a representation. A somewhat different view, based on applying exterior action
on product frames, is also elaborated and shown to lead to the same results. Extended
covariant exterior derivatives are finally presented, and used in reconstructing some basic
structural identities.
• Section 3. Internal structure analysis. The second part of this work deals with the

geometrical properties of the multi-gauge ghost sector. The respective BRST variation
laws are derived by pure geometrical means. Various aspects of the gauge-ghost extended
frame are studied, including base–fibre interplay via Yang–Mills-type torsion, off-diagonal
extension of Maurer–Cartan equations for product structures, and a representation of theB-
fields framework as a completely equivalent description of the ghost sector. The underlying
ideas and the reasonings behind are elaborated throughout. A particular duality symmetry,
which is manifested at the entire gauge sector, and which enhances a super BRST structure,
is finally realized.
• Closing. Additional related remarks are summarized in section 4. A straightforward

derivation of curvature coefficients, and a few words about the consequential group structure,
are finally appended.

2. The formalism of non-split splices

In the following we shall be interested in products of vector bundles. The underlying
manifold M is taken to be smooth and oriented, and each factor fibrespace(Vα)x is a
representation space of an arbitrary-rankGα-tensor,Gα ≡ Gα(x), x ∈ M, is a Lie group
labelled byα. Our objects of interest are geometrical forms, as well as matrix-valued forms,
belonging to

E =
⋃
x∈M

( n⊕
p=0

∧
pT ?x M

)
⊗
( m⊗
α=1

(Vα)x

)
=:

⋃
x∈M
Bx ⊗ Fx (3)

whereBx stands for a local Grassmann space of the base, andFx is a space product of
single-group, product-space fibres. We shall often use the termfoil † for Fx and foliar
complex to denote that particular piece ofE, later to be discussed, whose geometry is
claimed to be of a non-split nature.

Notation and conventions. Above, and in what follows,α andγ are labels of members of
a given collection ofm fibrespaces, groups, or Lie algebras;n = dimM, nα = dimGα,
Nα = dimVα for any α = 1 . . . m. In addition, aα, bα, . . . = 1 . . . nα are Gα-indices,
Aα,Bα, . . . = 1 . . . Nα are Vα-fibrespace indices, andµ, ν, . . . = 1 . . . n are basespace
holonomic indices. Notice that group space and fibrespace indices come with labels.
Concerning bracket notation, we put

[ψ, φ]∓ = ψφ ∓ φψ and [ψ, φ] = ψφ − (−1)deg(ψ) deg(φ)φψ

† We use the termfoil here instead of the termleaf which was used in [1] in order to avoid possible confusion
with foliation theory nomenclature.
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whateverψ andφ, and whatever the type of product among them. Finally, the summation
convention will be frequently adopted.

E then refers to a product bundle consisting ofm distinct independent co-existing
structures. The generating algebras{LieGα} areassumedto carry a faithful representation
ρα in Vα, and also to extend to the full enveloping associative algebras (so the anti-
commutator representation is defined). We shall restrict ourselves to deal only withGα-
structures whose represented generatorsρα{Lαaα } satisfy

[ρα(L
α
aα
), ρα(L

α
bα
)]+ ∈ span{ρα(Lαcα )}. (4)

The realizations are closed with respect to anti-commutation. An algebra whose represented
elements close with respect to anti-commutation is said to besealedin that representation.
We stress that, although it is not always easy to achieve, the requirement that the algebra
be sealed in a representation is obligatory for our purposes. A simple example of such an
algebra is the one which generates invertible linear transformations in a vector space. For
unitary structures, however, the inclusion (4) is satisfied only if the algebra is extended to
include the centres.

Next we introduce a set ofm Gα-induced connection 1-forms{ωα} all of which carry
a representationρE , sealed inFx ∈ E for all x ∈ M:

ωα(Gα) = ρE(ω̄α(Gα)) := ω̄a1...am
µ (Gα)e

µρa1...am (5)

{ω̄a1...am(Gα)} are Gα-induced coefficients; the short-hand notationρa1···am stands for a
product space of representations,

(ρa1···am)
B1...Bm
A1...Am

:=
m⊗
γ=1

(ργ (L
γ
aγ
))
Bγ
Aγ

(6)

and the set of basespace monomials{eµ} ∈ T ?M span a local basis for the cotangent
bundle of 1-forms. Note that, in general,ω̄a1...am(Gα) 6= ω̄a1...am(Gγ ) for α 6= γ , leading to
ωα 6= ωγ . By construction (see (16) for details), each element of the collection{ωα} obeys
the following laws of gauge:

∀gα ∈ Gα :

{
ωγ 7→ gα(ωγ + d)g−1

α α = γ
ωγ 7→ gαωγ g

−1
α α 6= γ (7)

where d stands for exterior differentiation onM, and the actions of theg’s are given by
means of matrix multiplication. Eachωα, therefore, transforms as a connection with respect
to its inducing groupGα, while behaving as a tensor with respect to the rest of the groups
in the collection.

We shall now state ourfundamental assertion:

There exists a complex inE whose geometry does not split even thoughE itself, being
a product bundle, inherently splits. We call it thefoliar complex(FC) associated with the
product bundleE.

The set of connection 1-forms introduced above solely determines the structure of FC.
This is best seen by considering the curvature 2-form which we propose to associate with
the foliar complex,

RFC({ω}) =
m∑

α,γ=1

(dωα + ωα ∧ ωγ ). (8)

To see that this is indeed a proper curvature, one follows two steps: first, one verifies
that the algebraic structure is preserved by the construction, namely, thatRFC also takes
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values∈ ⊗γ (LieGγ ). This, however, follows directly from the fact thatρ(LieG) for any
G ∈ {G} closes with respect to anti-commutation,

ρ(L)ρ(L) = 1
2[ρ(L), ρ(L)]+ + 1

2[ρ(L), ρ(L)]− ⊂ span{ρ(LieG)}. (9)

Consequently, no matter how many products of generators are found in each product term
ωα ∧ ωγ , assignment (9) guarantees that the resulting algebraic expansion will always lay
in ⊗γ (LieGγ ). And since dρE(·) = ρE(d·), we finally conclude

RFC = Rµν(ρE(ω̄))eµ ∧ eν =
m∑

α,γ=1

(dρE(ω̄α)+ ρE(ω̄α) ∧ ρE(ω̄γ ))

=
m∑

α,γ=1

(ρE(dω̄α)+ ρE(ω̄α ∧ ω̄γ )) = ρE(Rµν(ω̄))eµ ∧ eν . (10)

A detailed derivation of the coefficients{f (1...m)−a1...am b1...bm c1...cm
} involved in the explicit

expression forρE(ω̄α ∧ ω̄γ ), and a comment on the resulting group structure of FC, are
given in the appendix.

Second, one shows thatRFC is multilinear. Under the action of some representative
group, sayGα, RFC decomposes into 2m− 1 terms,

dωα + ωα ∧ ωα (11)

+
∑
γ 6=α

(dωγ + ωα ∧ ωγ + ωγ ∧ ωα) (12)

+
∑
γ 6=α

ωγ ∧ ωγ (13)

each of which transform linearly and in an independent manner with respect to that particular
Gα. This, however, holds for anyGα ∈ {Gγ }. ThusRFC is linear with respect to all the
G’s. And since actions of different groups commute,RFC is linear also with respect to a
simultaneousaction of any subcollection of groups. Thus the claim has been established.

Two comments are in order.
(1) The foliar gauge model exhibits indifference to global rescaling in the spaces of

connections:ωα 7→ c(α)ωα, where themc(α)’s arex-independent(×γGγ )-scalar scaling
parameters. The curvature then acquires a generalized form

RFC({ω}, {c}) =
m∑

α,γ=1

(c(α) dωα + c(αγ )ωα ∧ ωγ ) (14)

with c(αγ ) = c(α)c(γ ) = c(γ α). Note that decomposition (11)–(13) ofRFC intoGα-linear
pieces still remains valid after the connections are rescaled. The form ofRFC as was given
by (8) should, therefore, be replaced by the more general one, (14). In this case, given a
set of connection 1-forms{ωα}, the phase space of non-zero couplings spanned by{c(α)}
specifies a class of continuously tuned curvatures. In other words, each curvature∈ FC is
given up tom continuous parameters with respect to which it can be adjusted.

(2) We notice that(
∑

α ωα) can be regarded as a single connection, having the property
of supporting simultaneously many gauges:

∀ γ and∀gγ ∈ Gγ :

(∑
α

ωα

)
7→ gγ

((∑
α

ωα

)
+ d

)
g−1
γ . (15)

Therefore,(
∑

α ωα) underlies a generic formation of gauge, for whichm distinct coexisting
structures are intertwined, and whose associated multilinear curvature acquires a ‘single-
structure’ form,RFC = d(

∑
α ωα)+ (

∑
α ωα)∧ (

∑
α ωα). This interpretation also complies

with other aspects of the theory later to be discussed.



Non-split geometry on products of vector bundles 1459

As a clarifying illustration consider briefly the case of two gauge groups,G1 andG2,
and putω1 = ω andω2 = ϕ. The two-folium curvatureRFC = d(ω+ϕ)+(ω+ϕ)∧(ω+ϕ)
supports two kinds of manifestly covariant decompositions:

(1) manifestingG1-covariance

RFC = (dω + ω ∧ ω)+ (dϕ + ω ∧ ϕ + ϕ ∧ ω)+ (ϕ ∧ ϕ)
(2) manifestingG2-covariance

RFC = (dϕ + ϕ ∧ ϕ)+ (dω + ϕ ∧ ω + ω ∧ ϕ)+ (ω ∧ ω).
In conclusion,RFC is a two-group linear object. AG1-decomposition is associated with
a reducedG1-bundle, where onlyG1 is activated andG2 is frozen. Over the reduced
G1-bundle, ω represents a connection, whereasϕ is a coframe element with values in
Lie (G1). There,Rω = dω + ω ∧ ω is the reduced curvature whose coefficients are given
by {f (12)−

a1a2b1b2c1c2
} and Tω(ϕ) = dϕ + [ω, ϕ] ≡ Dωϕ is the counterpart torsion. Reversing

the roles played byω andϕ, aG2-covariant decomposition associates with a reducedG2-
bundle, where this timeG2 is activated andG1 is frozen, consisting of aG2-curvature
Rϕ = dϕ+ϕ∧ϕ, with the same characteristic two-folium coefficients as before, and whose
counterpart torsion is given byTϕ(ω) = dω + [ϕ, ω] ≡ Dϕω.

The prime motivation behind the concept of non-split geometry, as was already implied
in the introduction, comes from the observation that the geometrical framework generated
by taking the tensor product of single-fibre horizontal transports need not be the same as
that obtained by employing a horizontal transport on tensor products of fibres. Indeed, in
contrast with the former case, the latter interlaces the geometries of the individual bundles
associated with each factor structure in the splice. Consider the absolute differential of a
foliar frame fieldeA1...Am(x) = ⊗mα=1e

α
Aα
(x),

deA1...Am = d
m⊗
α=1

eαAα =
m∑
γ=1

(( Nγ∑
Bγ=1

$
Bγ
γ Aγ

e
γ

Bγ

)⊗
α 6=γ

eαAα

)

:=
m∑
γ=1

( ∑
B1...Bm

−(ρE(ω̄γ ))B1...Bm
A1...Am

eB1...Bm

)
. (16)

A linear expansion of theγ th factor-frame results in a corresponding set of coefficients
$γ which, in turn, induces an associated connection 1-formωγ := ρE(ω̄γ ) with values
∈ ⊗α (LieGα). The collection{ωγ } is naturally identified with that of definitions (5) and
(6). An overall gauge transformation applied simultaneously to all factor fibrespaces∈ E,

∀γ and∀gγ ∈ Gγ :
m⊗
γ=1

e
γ

Aγ
7→

m⊗
γ=1

g
Bγ
γ Aγ

e
γ

Bγ
(17)

uniquely dictates the gauge sector gauge laws of (7). Otherwise definition (16) would not
be automatically satisfied as an identity.

Definition (16) is conveniently abbreviated as deA1...Am = −
∑

α(ωαe)A1...Am . Now,
additional application of d immediately gives

ddeA1...Am = −(RFCe)A1...Am (18)

(= −(ρE(RFC(ω̄)))
B1...Bm
A1...Am

eB1...Bm)

which is seen to measure the overall effect generated by dragging a foil horizontally along an
infinitesimal parallelogram onM. Evidently, the result differs from the sum of single-fibre
closed tracks. Therefore, speaking in terms of Whitney constructions, the foliar curvature
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of anm-splice is different from the two types of sums one usually constructs from single-
structure curvatures,R(1)α = dω(1)α + ω(1)α ∧ ω(1)α , namely:

R(m)FC 6=
m∑
α=1

(
R(1)α

⊗
γ 6=α

Iγ

)
R(m)FC 6=

m⊕
α=1

R(1)α . (19)

Next we introduce linear exterior derivatives suitable for sections of the foliar complex.
For this purpose we make a distinction between vector-valuedfolium forms (≡ 9V) and
tensor-valued ones (≡ 9T). The former quantities are by construction (×γGγ )-vectors, and
the latter ones are by construction (×γGγ )-tensors. These are (in addition to functions) the
legitimate geometric residents of FC, whose linear structure survive derivations: in precise
terms,D9V := d9V +

∑
α ωα ∧9V is a folium vector, whereas

D9T := d9T +
∑
α

(ωα ∧9T + (−1)deg(9T)+19T ∧ ωα) (20)

is a folium tensor. The proofs are just standard ones. One first shows thatD9V andD9T

areG-linear with respect to anyG ∈ {G}. Then one shows that both derivatives satisfy the
graded Leibnitz rule with respect to exterior multiplication of folium forms†.

In terms of these covariant exterior derivatives, the curvatureRFC can now be
constructed via [D,D]9V = 2RFC∧ 9V, or else, via [D,D]9T = 2[RFC, 9T]. Moreover,
by the Jacobi identity we have

0= [D, [D,D]]9T = 2D[RFC, 9T] − 2[RFC,D9T]

andDRFC = 0 follows immediately. For a multi-Lie-valued form9T we obtainDTFC =
[RFC, 9T] with TFC := D9T being the torsion on FC. We shall elaborate on the torsion
matter later in the next section. Evidently, the two Bianchi identities,DTFC = [RFC, 9T]
and DRFC = 0, automatically implyDDTFC = [RFC, TFC]. In general, the action of
a pth power ofDD on 8T := D9T produces ap-nested even commutator of the type
[RFC, [. . . , [RFC,8T] . . .]]. Now, a polynomial inDD applied to8T obviously terminates
at the power of [n/2] − deg8T. However, at the limit wheren → ∞, but keeping
dim(⊗αVα) finite, the infinite sum of nested commutators can be converted into enveloping
exponentials (by means of induced representations) and one can formally write

exp(DD)8T = (exp(RFC))8T(exp(−RFC)).

3. Ghosts, torsion, and the entire FC BRST super structure

Our next aim is to explore the geometry induced along the ‘internal’ directions. For
this propose, consider the following set of mutually-independenthorizontal translations
ωα → ωα +�α, where the shifts{�α} are linear with respect to all theG’s. Consequently
ωα +�α transforms according to (19) but it is constructed such that it can never be gauge
connected back toωα; thus, each translation displays a bijection between two gauge-
inequivalent orbits in moduli space. In general, the shifted connections correspond to a
different curvature. This, however, can be avoided by extending the original basespace
such that it also includes the angles associated with all the gauge groups, from now on
considered as additional independent variables [2]. Namely, enlarging the basespace is
expected to compensate for making the shifts.

Each set of angles{φaα (x)}, coordinating Gα(x), is naturally supplied with a
coboundary-type operatorδα, in complete analogy with the exterior derivative d onM. More

† In contrast with an incorrect statement that was given in [1], covariance will not be supported only in cases
where factor-terms in a product are not pure folium forms.
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specifically, each groupGα(x), at anyx ∈ M, is associated with a Grassmann space, graded
by δα, over which�α is taken as a 1-form. This can be established as follows. In terms of
local coordinates, one puts d := dxµ(∂/∂xµ) andδα := dφaα (∂/∂φaα ). By construction, all
exterior derivatives anti-commute: dδα + δα d= δαδγ + δγ δα = 0. Evidently,

δαφ
aα = dφbα (∂φaα/∂φbα ) = dφaα = (∂φaα/∂xµ) dxµ

and, moreover, since for eachα the φ’s smoothly depend onx, and since the inverse
dependence is also assumed, we also have dφaα = (∂φaα/∂φaγ ) dφaγ . Thus, any differential
1-form�aα dφaα which takes its values in⊗γ (LieGγ ) induces a linear shift (not necessarily
horizontal) via a differential transition,

ρE(�aα ) dφaα = ρE(�aα )
∂φaα

∂xµ
dxµ =: ρE((�α)µ) dxµ =: �α. (21)

Owing to their algebraic properties, which we shall soon fully reveal, we identify{δα}
with FC BRST operators, and thehorizontal shifts{�α} with folium ‘ghosts’ [2]. Following
these identifications, a term of the form(∂φaα/∂xµ2)(∂φbα/∂xµ2), which appears in any
basespace implementation of indices of a horizontal geometric object, corresponds to a
ghost numberNα associated with that object.

Letting all of our bundle objects, in particular the connections and the shifts, depend on
all group angles, thus extending the basespace such that it includes the group manifolds as
well, requires a proper modification of the covariant exterior derivative,D→ D̂:

D̂9T := d9T +
m∑
α=1

(δα9T + ωα ∧9T + (−1)deg(9T)+19T ∧ ωα

+�α ∧9T + (−1)deg(9T)+19T ∧�α). (22)

In particular, two successive applications ofD̂ on a generic9T yields

D̂D̂9T = [R, 9] +
[∑

α

D�α,9T

]
+
[∑
α,γ

δγ ωα,9T

]
+
[∑
α,γ

δγ�α,9T

]
+
[∑
α,γ

�α ∧�γ ,9T

]
. (23)

The imposed shifts, followed by enlarging the basespace, are required to cause no
geometrical impact: the curvature remains the same, thus the extra four terms in (23)
must sum up to zero. Comparing terms of equal Grassmann grade we findm(m+1) BRST
variation laws,

δ[α�γ ]+ = −�[α ∧�γ ]+ (24)

δα

( m∑
γ=1

ωγ

)
= −D�α. (25)

Equation (24) implies thatδα�γ equals either−�γ ∧ �α or −�α ∧ �γ . Without loss of
generality we take the former possibility. It is easily verified that any of the operators{δα}
square to zero on both�γ and

∑
γ ωγ . Note also that the sum as a whole,

∑
γ ωγ =: ωFC,

and not each particular summand, possesses a definite transformation law; eachδ-variation
detects asingle-gaugeconnection in a theory in which the curvature can be cast in a
single-structureform,RFC = dωFC+ ωFC∧ ωFC.
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Ghosts are seen also from a different point of view. The same methods that have been
used in reproducing sets of connection coefficients are also suitable for ghost coefficients.
Following definition (16), folium ghosts of typeγ are generated by performing the variation

δγeA1...Am =
( Nγ∑
Bγ=1

ε
Bγ
γAγ
e
γ

Bγ

)⊗
α 6=γ

eαAα =: −(�γ )B1...Bm
A1...Am

eB1...Bm (26)

where we usedeA1...Am = ⊗mα=1e
α
Aα
(x, φα), and thereforeδγeαAα (x, φα) = 0 for α 6= γ .

Definition (26) will be conveniently abbreviated asδγe = −�γe. Let us write for a
combined gauge transformationgE({φ(x)}) =

∏
α gα(φα(x)). Then, a proposition of the

form�γ = g−1
E δγ gE [2] cannotbe compatible, nor consistent, with our adopted guidelines:

it fails to be horizontal because it is the internal part of an (extended) pure gauge and,
furthermore, fromδγe′ = −�′γe′,

δγ (gEe) = −gE�γ g−1
E gEe = −gE�γe = gEδγe⇒ δγ gE = 0. (27)

Instead, {�γ }, being the difference between two gauge-inequivalent orbits, should be
determined by the structure of the moduli space of FC-connection 1-forms†. Next, let
us rederive equations (24) and (25):

0= (δγ d+ dδγ )e = −δγ
(∑

α

ωαe

)
− d(�γe)

=
(
− δγ

∑
α

ωα −D�γ
)
e⇒ δγ ωFC = −D�γ (28)

0= (δαδγ + δγ δα)e = −(δ[α�γ ]+ +�[γ ∧�α]+)e⇒ δ[α�γ ]+ = −�[γ ∧�α]+ . (29)

Equations (29) (≡ (24)) are an extension to the Maurer–Cartan equations for ghosts on
product bundles; the ‘off-diagonal’ ones are cross-fibre interferences. As in the case of
a single gauge, extended Maurer–Cartan equations reflect the absence of curvature on the
product-group manifold.

The quantity�γ is a coframe element ofE with values in⊗α (LieGα). The bi-graded
object D�γ = −δγ ωFC =: Tγ is consequently a tensor-valuedtorsion 2-form element
∈ FC. Inherited from [δα, δγ ]+ = 0, it satisfiesδαTγ + δγTα = 0, and the Bianchi identity
DTγ = [RFC, �γ ] holds. Moreover, becauseD is linear,

∑
γ Tγ =: TFC accumulates the

overall torsion. Setting
∑

γ �γ =: �FC, we finally obtain (see end of section 2):

DTFC = [RFC, �FC]
(DRFC=0)H⇒ DDTFC = [RFC, TFC]. (30)

Apparently,TFC is larger than the sum of all single-structure torsion 2-forms, because

TFC = −
∑
γ,α

δγ ωα

= −
∑
γ

δγ ωγ −
∑
α 6=γ

δγ ωα

=
∑
γ

T (1)γ + cross-fibre contributions. (31)

A prior knowledge of the extended Maurer–Cartan equations pins down an equivalent
(but not self-contained) description for the ghost sector. Let us definem × m bosonic
quantities,Bαγ = δα�γ = −�γ ∧ �α. Obviously we haveδαBαγ = 0 becauseBαγ is
by constructionδα-exact. On the other hand, we haveδγ Bαγ = −[�γ ,Bαγ ], from which

† Thus, our ghosts are not very much ‘ghost-like’; they really possess physical content.
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δγ δγ Bαγ = 0 follows immediately. According to these variation laws we are dealing here
with B-fields: them diagonal onesBαα represent the sector of the decoupled factor-structure
ingredients; the remainingm(m − 1) off-diagonal ones are fibre intertwining effects. The
B-field description, however, is not entirely self-contained since the corresponding BRST
variations are ‘doped’ with the ghosts themselves. On the other hand, we have the situation
that theB-fields are now by no means auxiliary degrees of freedom. Rather, they are
composites made of ghost–ghost pairs.

The variation laws (24) and (25) are manifestly invariant under a duality transformation
which is realized by pair-permutation of labelsα ↔ γ applied simultaneously to both
equations. As for theB-fields, duality manifests itself via transposition. This provides one
with an arbitrary classification into ghost–antighost pairs, and the corresponding pairs of
BRST and anti-BRST operators. Consider for example the two-folium case (α, γ = 1, 2)
and putδ1 = δ, δ2 = δ̄, �1 = �, �2 = 8, ω1 = ω, andω2 = ϕ. From (24) and (25) we
have

δ� = −� ∧� δ8 = −8 ∧� δ(ω + ϕ) = −D�
δ̄8 = −8 ∧8 δ̄� = −� ∧8 δ̄(ω + ϕ) = −D8. (32)

In particular,δ8+ δ̄� = −[8,�]. A simultaneous exchangeδ ↔ δ̄ and�↔ 8 transforms
the upper triad of (32) into the lower one, andvice versa; thus a duality symmetry is realized.
Otherwise, we setB = −8 ∧ � and B̄ = −� ∧ 8, whose variation properties are easily
read-off from (32),

δB = 0 δB̄ = −[�, B̄]

δ̄B̄ = 0 δ̄B = −[8,B]
(33)

(wherebyδδ̄B and δ̄δB̄ vanish independently). Duality now maps aB-field into its dual
one,B̄, and the upper pair of (33) is mapped into the lower one.

4. Additional remarks

An obligatory requirement of our model for gluing gauge structures is, of course,
condition (4) which puts severe limitations at the level of the algebra and on the
representation spaces which we use. However, in cases where (4) is not strictly fulfilled,
we can still look for appropriate extensions of the algebra such that (4) will be formally
satisfied. Central extensions involved in the glue of two unitary structures were shown to
generate sectors of a non-split geometrical nature as well as the decoupled (modular part of
the) factor structures. In particular, the latter are seen to be totally autonomous. It is exactly
for this reason that one may deal with single structures of this type, without caring much
for what really happens in their geometrical periphery. This means that a physical theory
which is based on the geometrical framework of many (a priori distinct) coexisting SU(N )
structures, will not be directly affected by the existence of peripheral non-split complexes.

Consider for example an SU(2) × SU(3) composition: one should first convert to
centrally-extended algebras in order to establish a suitable foliar framework, namely, to
work with a U(2) × U(3) splice instead [1]. This was seen to generate a distinguished
geometrical sector built of an autonomous SU(2) structure, coexistent with an autonomous
SU(3) structure; pure SU(2) gluons carry no colour charge, pure SU(3) gluons carry no weak
charge. There still exists, however, a non-split piece, whose gauge gluons carry colour and
weak charges simultaneously, such as the leptoquarks of an SU(5) grand unified theory. Of
course, in contrast with the SU(5) case, the resulting modular factor structures have nothing
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to do with the breakdown of a grand-group symmetry. They just split-off, leaving behind
a residual leptoquark sector. However, these issues are not within the scope of the present
work.
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Appendix. Computing RFC coefficients

By assumption, for each labelγ we have

[ργ (L
γ
aγ
), ργ (L

γ

bγ
)]∓ =

nγ∑
cγ=1

f
(γ )∓
aγ bγ cγ

ργ (L
γ
cγ
) (34)

where{f (γ )−aγ bγ cγ
} are the structure constants of the groupGγ , and{f (γ )+aγ bγ cγ

} are the Clebsch–
Gordon coefficients of theVγ × Vγ 7→ Vγ homomorphisms. Consider for the moment the
productω ∧ ω for anyω ∈ {ω}:

ω ∧ ω =
{n}∑
{a}

{n}∑
{b}
ω̄
{a}
[µ ρ{a}ω̄

{b}
ν]−ρ{b}e

µ ∧ eν

= 1

2

{n}∑
{a}

{n}∑
{b}
ω̄{a} ∧ ω̄{b}[ρ{a}, ρ{b}]− (35)

where{a} stands for the sequencea1 . . . am, etc. Now, according to (34), for each factor
algebra∈ ⊗γ (LieGγ ) we have,

ργ (L
γ
aγ
)ργ (L

γ

bγ
) = 1

2
[ργ (L

γ
aγ
), ργ (L

γ

bγ
)]+ + 1

2
[ργ (L

γ
aγ
), ργ (L

γ

bγ
)]−

= 1

2

nγ∑
cγ=1

(f
(γ )+
aγ bγ cγ

+ f (γ )−aγ bγ cγ
)ργ (L

γ
cγ
). (36)

Moreover, since [ρ{a}, ρ{b}]∓(≡ [ρa1...am , ρb1...bm ]∓) can be rewritten in terms of tensor
products of representations of ordered pairs,

[ρ{a}, ρ{b}]∓ =
m⊗
γ=1

ργ (L
γ
aγ
L
γ

bγ
)∓

m⊗
γ=1

ργ (L
γ

bγ
Lγaγ ) (37)

we have

[ρ{a}, ρ{b}]∓ =
{n}∑
{c}
f
(1...m)∓
{a}{b}{c}ρ{c} (38)

with the coefficients{f (1...m)∓{a}{b}{c} ≡ f (1...m)∓a1...am b1...bm c1...cm
} given by

f
(1...m)∓
{a}{b}{c} = 2−m

[ m∏
γ=1

(f
(γ )+
aγ bγ cγ

+ f (γ )−aγ bγ cγ
)∓

m∏
γ=1

(f
(γ )+
aγ bγ cγ

− f (γ )−aγ bγ cγ
)

]
= 2−m

[ ∑
σ1···σm=±

(
1∓

∏
γ

σγ

)∏
γ

f
(γ )σγ
aγ bγ cγ

]
(39)
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where we have usedf ∓bac = ∓f ∓abc. For example, form = 2 one finds†

f
(12)−
a1a2 b1b2 c1c2

= 1
2(f

(1)+
a1b1c1

f
(2)−
a2b2c2
+ f (1)−a1b1c1

f
(2)+
a2b2c2

). (40)

Each term inf (1...m)− contains an odd number off (γ )− ’s, while each term inf (1...m)+ contains
an even number off (γ )− ’s, regardless of how manyf (γ )+ ’s are involved. Substituting (38)
back in (35) we finally obtain

ω ∧ ω = 1

2

{n}∑
{a}

{n}∑
{b}

{n}∑
{c}
ω̄{a} ∧ ω̄{b}f (1...m)−{a}{b}{c}ρ{c}. (41)

The whole process, however, can be repeated with respect to any symmetric combination
(ωα ∧ ωγ + ωγ ∧ ωα), α, γ = 1, . . . , m, all along with the samef (1...m)− ’s. Therefore, the
passage ∑

α,γ

ρE(ωα) ∧ ρE(ωγ )→
∑
α,γ

ρE(ωα ∧ ωγ )

always involves exactly the same coefficients, as required, and the calculation is completed;
the curvature then acquires the form

ρE(RFC(ω̄)) =
∑

$∈{ω̄γ }

{n}∑
{a}

{n}∑
{b}

{n}∑
{c}

(
d${c} + 1

2
f
(1...m)−
{a}{b}{c}${a} ∧${b}

)
ρ{c}. (42)

The foliar complex construction is truly supplied with a group structure which is,
however, highly non-trivial because⊗γ (LieGγ ) 6= Lie(×γGγ ) =

∑
α(LieGα). This,

of course, implies the inequalityf (1...m)− 6= ∏γ f
(γ )− and the information about the group

structure now lies in the former quantity instead of the latter one. The dimensionality
of the grand-groupG ⊃ ×γGγ is as large as

∏
γ nγ (nγ > dim LieGγ ), which is larger

than dim(×γGγ ) =
∑

γ nγ . However, the grand-groupG should not be confused with the
underlying gauge groups which are the true characteristic symmetries of the splice.
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